Recently visited
Please sign in to see a list of articles you recently visited.
Recently updated
 SOX9
Homo sapiens
 HIF1A
Homo sapiens
 Pax6
Mus musculus
 PAX6
Homo sapiens
 Snai2
Mus musculus
 PPARA
Homo sapiens
 Ppara
Mus musculus
 Thrb
Mus musculus
 SNAI2
Homo sapiens
 Tbr1
Mus musculus
Transcription Factor Encyclopedia  BETA
Comments (post)
There are no comments posted here... Yet.
Papers
About this section
Notable papers are listed here. Papers with two red dots are highly recommended. Articles with one or zero dots are recommended but not essential.
  1. (2008) Perilhou A, Tourrel-Cuzin C, Kharroubi I, Henique C, Fauveau V, Kitamura T, Magnan C, Postic C, Prip-Buus C, Vasseur-Cognet M. The transcription factor COUP-TFII is negatively regulated by insulin and glucose via Foxo1- and ChREBP-controlled pathways. Mol. Cell. Biol., 28(21):6568-79.
    COUP-TFII has an important role in regulating metabolism in vivo. We showed this previously by deleting COUP-TFII from pancreatic beta cells in heterozygous mutant mice, which led to abnormal insulin secretion. Here, we report that COUP-TFII expression is reduced in the pancreas and liver of mice refed with a carbohydrate-rich diet and in the pancreas and liver of hyperinsulinemic and hyperglycemic mice. In pancreatic beta cells, COUP-TFII gene expression is repressed by secreted insulin in response to glucose through Foxo1 signaling. Ex vivo COUP-TFII reduces insulin production and secretion. Our results suggest that beta cell insulin secretion is under the control of an autocrine positive feedback loop by alleviating COUP-TFII repression. In hepatocytes, both insulin, through Foxo1, and high glucose concentrations repress COUP-TFII expression. We demonstrate that this negative glucose effect involves ChREBP expression. We propose that COUP-TFII acts in a coordinate fashion to control insulin secretion and glucose metabolism.
    Comments (post)
    There are no comments posted here... Yet.
  2. (2008) Perilhou A, Tourrel-Cuzin C, Zhang P, Kharroubi I, Wang H, Fauveau V, Scott DK, Wollheim CB, Vasseur-Cognet M. The MODY1 gene for hepatocyte nuclear factor 4alpha and a feedback loop control COUP-TFII expression in pancreatic beta cells. Mol. Cell. Biol., 28(14):4588-97.
    Pancreatic islet beta cell differentiation and function are dependent upon a group of transcription factors that maintain the expression of key genes and suppress others. Knockout mice with the heterozygous deletion of the gene for chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) or the complete disruption of the gene for hepatocyte nuclear factor 4alpha (HNF4alpha) in pancreatic beta cells have similar insulin secretion defects, leading us to hypothesize that there is transcriptional cross talk between these two nuclear receptors. Here, we demonstrate specific HNF4alpha activation of a reporter plasmid containing the COUP-TFII gene promoter region in transfected pancreatic beta cells. The stable association of the endogenous HNF4alpha with a region of the COUP-TFII gene promoter that contains a direct repeat 1 (DR-1) binding site was revealed by chromatin immunoprecipitation. Mutation experiments showed that this DR-1 site is essential for HNF4alpha transactivation of COUP-TFII. The dominant negative suppression of HNF4alpha function decreased endogenous COUP-TFII expression, and the specific inactivation of COUP-TFII by small interfering RNA caused HNF4alpha mRNA levels in 832/13 INS-1 cells to decrease. This positive regulation of HNF4alpha by COUP-TFII was confirmed by the adenovirus-mediated overexpression of human COUP-TFII (hCOUP-TFII), which increased HNF4alpha mRNA levels in 832/13 INS-1 cells and in mouse pancreatic islets. Finally, hCOUP-TFII overexpression showed that there is direct COUP-TFII autorepression, as COUP-TFII occupies the proximal DR-1 binding site of its own gene in vivo. Therefore, COUP-TFII may contribute to the control of insulin secretion through the complex HNF4alpha/maturity-onset diabetes of the young 1 (MODY1) transcription factor network operating in beta cells.
    Comments (post)
    There are no comments posted here... Yet.
  3.  review article 
    (2006) Benoit G, Cooney A, Giguere V, Ingraham H, Lazar M, Muscat G, Perlmann T, Renaud JP, Schwabe J, Sladek F, Tsai MJ, Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev., 58(4):798-836.
    Half of the members of the nuclear receptors superfamily are so-called "orphan" receptors because the identity of their ligand, if any, is unknown. Because of their important biological roles, the study of orphan receptors has attracted much attention recently and has resulted in rapid advances that have helped in the discovery of novel signaling pathways. In this review we present the main features of orphan receptors, discuss the structure of their ligand-binding domains and their biological functions. The paradoxical existence of a pharmacology of orphan receptors, a rapidly growing and innovative field, is highlighted.
    Comments (post)
    There are no comments posted here... Yet.
  4. (2005) Bardoux P, Zhang P, Flamez D, Perilhou A, Lavin TA, Tanti JF, Hellemans K, Gomas E, Godard C, Andreelli F, Buccheri MA, Kahn A, Le Marchand-Brustel Y, Burcelin R, Schuit F, Vasseur-Cognet M. Essential role of chicken ovalbumin upstream promoter-transcription factor II in insulin secretion and insulin sensitivity revealed by conditional gene knockout. Diabetes, 54(5):1357-63.
    Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) has been implicated in the control of blood glucose by its potent effect on expression and signaling of various nuclear receptors. To understand the role of COUP-TFII in glucose homeostasis, conditional COUP-TFII-deficient mice were generated and crossed with mice expressing Cre under the control of rat insulin II gene promoter, resulting in deletion of COUP-TFII in pancreatic beta-cells. Homozygous mutants died before birth for yet undetermined reasons. Heterozygous mice appeared healthy at birth and showed normal growth and fertility. When challenged intraperitoneally, the animals had glucose intolerance associated with reduced glucose-stimulated insulin secretion. Moreover, these heterozygous mice presented a mild increase in fasting and random-fed circulating insulin levels. In accordance, islets isolated from these animals exhibited higher insulin secretion in low glucose conditions and markedly decreased glucose-stimulated insulin secretion. Their pancreata presented normal microscopic architecture and insulin content up to 16 weeks of study. Altered insulin secretion was associated with peripheral insulin resistance in whole animals. It can be concluded that COUP-TFII is a new, important regulator of glucose homeostasis and insulin sensitivity.
    Comments (post)
    There are no comments posted here... Yet.
  5. (2002) Zhang P, Bennoun M, Gogard C, Bossard P, Leclerc I, Kahn A, Vasseur-Cognet M. Expression of COUP-TFII in metabolic tissues during development. Mech. Dev., 119(1):109-14.
    In mammals, the COUP-TF-family consisting of two structurally related proteins, COUP-TFI and COUP-TFII belongs to the orphan member of the steroid/thyroid hormone receptor superfamily. In an attempt to gain insights into the role of COUP-TFII, we examined developmental expression pattern of the mouse COUP-TFII focusing our studies on endoderm-derived tissues, pancreas and liver in particular. Independent lines of transgenic mice expressing Escherichia coli beta-galactosidase driven by the COUP-TFII promoter were generated. Embryonic expression of the beta-gal protein at day 9 of gestation was detected in the notochord, the ventral neural tube and, interestingly, in the gut endoderm, a site where COUP-TFII has not been detected previously. Between 9.5 and 11.5 dpc, beta-gal expression pattern that was established earlier persisted and sections revealed a staining of the common atrial chamber of the heart. At 15.5 dpc, beta-gal activity was found in all endoderm-derived tissues. We found that COUP-TFII mRNA and protein were present in fetal and adult hepatocytes. Finally, COUP-TFII expression was detected in pancreas, as judged by co-expression of the beta-gal in some of the glucagon and PDX1 positive-cells at 12.5 dpc and co-expression with insulin positive-cells at 15.5 dpc. In adult pancreas, COUP-TFII protein was present in the endocrine islet cells.
    Comments (post)
    There are no comments posted here... Yet.
  6.  review article 
    (2000) Pereira FA, Tsai MJ, Tsai SY. COUP-TF orphan nuclear receptors in development and differentiation. Cell. Mol. Life Sci., 57(10):1388-98.
    Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) are orphan members of the steroid/thyroid hormone receptor superfamily. They have been shown to negatively regulate the activation function of vitamin D, thyroid hormone, retinoic acid, the retinoid X and the peroxisome proliferator-activated receptors. COUP-TF genes have been cloned from many species and their sequences are exceptionally conserved through evolution. This suggests a critical role for the COUP-TFs in these organisms. Indeed, the Drosophila COUP-TF, seven-up and mouse COUP-TFII are essential for development and differentiation during embryogenesis. Our current understanding of COUP-TF function suggests that they serve vital physiological roles during development despite extensive overlaps of expression. This defines the COUP-TFs as important factors in regulation of development and differentiation in multiple organisms.
    Comments (post)
    There are no comments posted here... Yet.
  7. (1997) Escriva H, Safi R, Hänni C, Langlois MC, Saumitou-Laprade P, Stehelin D, Capron A, Pierce R, Laudet V. Ligand binding was acquired during evolution of nuclear receptors. Proc. Natl. Acad. Sci. U.S.A., 94(13):6803-8.
    The nuclear receptor (NR) superfamily comprises, in addition to ligand-activated transcription factors, members for which no ligand has been identified to date. We demonstrate that orphan receptors are randomly distributed in the evolutionary tree and that there is no relationship between the position of a given liganded receptor in the tree and the chemical nature of its ligand. NRs are specific to metazoans, as revealed by a screen of NR-related sequences in early- and non-metazoan organisms. The analysis of the NR gene duplication pattern during the evolution of metazoans shows that the present NR diversity arose from two waves of gene duplications. Strikingly, our results suggest that the ancestral NR was an orphan receptor that acquired ligand-binding ability during subsequent evolution.
    Comments (post)
    There are no comments posted here... Yet.
  8. (2007) Petit FG, Jamin SP, Kurihara I, Behringer RR, DeMayo FJ, Tsai MJ, Tsai SY. Deletion of the orphan nuclear receptor COUP-TFII in uterus leads to placental deficiency. Proc. Natl. Acad. Sci. U.S.A., 104(15):6293-8.
    COUP-TFII (NR2F2), chicken ovalbumin upstream promoter-transcription factor II, is an orphan nuclear receptor of the steroid/thyroid hormone receptor superfamily. The Coup-tfII-null mutant mice die during the early embryonic development because of angiogenesis and heart defects. To analyze the physiological function of COUP-TFII during organogenesis, we used the cre/loxP system to conditionally inactivate COUP-TFII in the ovary and uterus. Homozygous adult female mutants with specific inactivation of the Coup-tfII gene in uterine stromal and smooth muscle cells have severely impaired placental formation, leading to miscarriage at days 10-12 of pregnancy. Deletion of the Coup-tfII gene resulted in an increase in trophoblast giant cell differentiation, a reduction of the spongiotrophoblast layer, and an absence of labyrinth formation causing an improper vascularization of the placenta. This study describes an important maternal role of COUP-TFII in regulating the placentation. The endometrial COUP-TFII might modulate the signaling between the uterus and the extraembryonic tissue for the proper formation of the placenta.
    Comments (post)
    There are no comments posted here... Yet.
  9. (2006) Raccurt M, Smallwood S, Mertani HC, Devost D, Abbaci K, Boutin JM, Morel G. Cloning, Expression and Regulation of Chicken Ovalbumin Upstream Promoter Transcription Factors (COUP-TFII and EAR-2) in the Rat Anterior Pituitary Gland. Neuroendocrinology, 82(5-6):233-244.
    Chicken ovalbumin upstream promoter transcription factors (COUP-TF)-II (NR2F2) and EAR-2 (NR2F6) are structurally related orphan members of the nuclear receptors superfamily. There are growing evidences that these factors play important roles during processes of differentiation and proliferation of several tissues. To better understand their role in the differentiated adult rat pituitary gland, we cloned COUP-TFII and EAR-2 cDNAs from an anterior pituitary cDNA library. Subsequently, we raised and characterized specific antibodies to the N-terminal domain of both nuclear receptors. We next examined their cellular and subcellular distribution in the pituitary gland and determined their regulation during pregnancy. COUP-TFII and EAR-2 pituitary genes display, respectively, 90 and 100% homologies with their human and mouse homologues. Cellular expression of both nuclear receptors was mainly detected in the lactotropes of male and female rats, with a prominent distribution in the nuclear compartment for EAR-2, and interestingly both proteins were significantly upregulated in pituitaries of pregnant vs. cycling female rats. Thus, our results have characterized cloning of rat pituitary COUP-TFII and EAR-2 genes, demonstrated that they are both specifically expressed in lactotropes, and strongly suggested that they may play an important role in modulating prolactin (PRL) gene expression during pregnancy. Copyright (c) 2005 S. Karger AG, Basel.
    Comments (post)
    There are no comments posted here... Yet.
  10. (2006) Myers SA, Wang SC, Muscat GE. The chicken ovalbumin upstream promoter-transcription factors modulate genes and pathways involved in skeletal muscle cell metabolism. J. Biol. Chem., 281(34):24149-60.
    The chicken ovalbumin upstream promoter-transcription factors (COUP-TFs) are "orphan" members of the nuclear hormone receptor (NR) superfamily. COUP-TFs are involved in organogenesis and neurogenesis. However, their role in skeletal muscle (and other major mass tissues) and metabolism remains obscure. Skeletal muscle accounts for approximately 40% of total body mass and energy expenditure. Moreover, this peripheral tissue is a primary site of glucose and fatty acid utilization. We utilize small interfering RNA (siRNA)-mediated attenuation of Coup-TfI and II (mRNA and protein) in a skeletal muscle cell culture model to understand the regulatory role of Coup-Tfs in this energy demanding tissue. This targeted NR repression resulted in the significant attenuation of genes that regulate lipid mobilization and utilization (including Pparalpha, Fabp3, and Cpt-1). This was coupled to reduced fatty acid beta-oxidation. Additionally we observed significant attenuation of Ucp1, a gene involved in energy expenditure. Concordantly, we observed a 5-fold increase in ATP levels in cells with siRNA-mediated repression of Coup-TfI and II. Furthermore, the expression of "classical" liver X receptor (LXR) target genes involved in reverse cholesterol transport (Abca1 and Abcg1) were both significantly repressed. Moreover, we observed that repression of the Coup-Tfs ablated the activation of Abca1, and Abcg1 mRNA expression by the selective LXR agonist, T0901317. In concordance, Coup-Tf-siRNA-transfected cells were refractory to Lxr-mediated reduction of total intracellular cholesterol levels in contrast to the negative control cells. In agreement Lxr-mediated activation of the Abca1 promoter in Coup-Tf-siRNA cells was attenuated. Collectively, these data suggest a pivotal role for Coup-Tfs in the regulation of lipid utilization/cholesterol homeostasis in skeletal muscle cells and the modulation of Lxr-dependent gene regulation.
    Comments (post)
    There are no comments posted here... Yet.
  11. (2005) Takamoto N, Kurihara I, Lee K, Demayo FJ, Tsai MJ, Tsai SY. Haploinsufficiency of chicken ovalbumin upstream promoter transcription factor II in female reproduction. Mol. Endocrinol., 19(9):2299-308.
    The chicken ovalbumin upstream promoter transcription factor II, COUP-TFII, is a member of the orphan nuclear receptor transcription factor family. Genetic ablation of COUP-TFII results in early embryonic lethality and demonstrates that this gene is required for cardiac and vascular development. Expression of COUP-TFII persists throughout postnatal life in various tissues including the female reproductive tract. However, the physiological function of COUP-TFII in female reproduction has not been extensively analyzed. Here, we provide phenotypic evidences that haploinsufficiency of COUP-TFII in mice demonstrates an important role of COUP-TFII for normal female reproduction. COUP-TFII +/- females show significantly reduced fecundity, irregular estrus cycles, delayed puberty, and retarded postnatal growth. Analysis of the reduced fertility revealed that although ovarian function was normal with respect to ovulation, the ovaries have reduced ability to synthesize progesterone in response to exogenous gonadotropins. This reduction is due to the reduction of the expression of steroidogenic enzymes important for progesterone synthesis and the reduction of vascularization in COUP-TFII heterozygotes. Analysis of uterine function demonstrated a reduced response to an experimentally induced decidual cell reaction indicating that the ability of the uterus to support embryo implantation was reduced. Taken together, our data show global impact of gene dosage effects of COUP-TFII on female postnatal life and indicates requirement of COUP-TFII in normal female reproduction, in particular for uterine endometrial functions during the peri-implantation period.
    Comments (post)
    There are no comments posted here... Yet.
  12. (2005) You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature, 435(7038):98-104.
    Arteries and veins are anatomically, functionally and molecularly distinct. The current model of arterial-venous identity proposes that binding of vascular endothelial growth factor to its heterodimeric receptor--Flk1 and neuropilin 1 (NP-1; also called Nrp1)--activates the Notch signalling pathway in the endothelium, causing induction of ephrin B2 expression and suppression of ephrin receptor B4 expression to establish arterial identity. Little is known about vein identity except that it involves ephrin receptor B4 expression, because Notch signalling is not activated in veins; an unresolved question is how vein identity is regulated. Here, we show that COUP-TFII (also known as Nr2f2), a member of the orphan nuclear receptor superfamily, is specifically expressed in venous but not arterial endothelium. Ablation of COUP-TFII in endothelial cells enables veins to acquire arterial characteristics, including the expression of arterial markers NP-1 and Notch signalling molecules, and the generation of haematopoietic cell clusters. Furthermore, ectopic expression of COUP-TFII in endothelial cells results in the fusion of veins and arteries in transgenic mouse embryos. Thus, COUP-TFII has a critical role in repressing Notch signalling to maintain vein identity, which suggests that vein identity is under genetic control and is not derived by a default pathway.
    Comments (post)
    There are no comments posted here... Yet.
  13. (2005) You LR, Takamoto N, Yu CT, Tanaka T, Kodama T, Demayo FJ, Tsai SY, Tsai MJ. Mouse lacking COUP-TFII as an animal model of Bochdalek-type congenital diaphragmatic hernia. Proc. Natl. Acad. Sci. U.S.A., 102(45):16351-6.
    Congenital diaphragmatic hernia (CDH), a life-threatening anomaly, is a major cause of pediatric mortality. Although the disease was described >350 years ago, the etiology of CDH is poorly understood. Here, we show that tissue-specific null mutants of COUP-TFII exhibit Bochdalek-type CDH, the most common form of CDH. COUP-TFII, a member of orphan nuclear receptors, is expressed in regions critical for the formation of the diaphragm during embryonic development. Ablation of COUP-TFII in the foregut mesenchyme, including the posthepatic mesenchymal plate (PHMP), results in the malformation of the diaphragm and the failure of appropriate attachment of the PHMP to the body wall. Thus, both the stomach and liver enter the thoracic cavity, leading to lung hypoplasia and neonatal death. Recently a minimally deleted region for CDH has been identified on chromosome 15q26.1-26.2 by CGH array and FISH analysis. COUP-TFII is one of the four known genes residing within this critical region. Our finding suggests that COUP-TFII is a likely contributor to the formation of CDH in individuals with 15q deletions, and it may also be a potential contributor to some other Bochdalek-type of CDH.
    Comments (post)
    There are no comments posted here... Yet.
  14. (2005) Baroukh N, Ahituv N, Chang J, Shoukry M, Afzal V, Rubin EM, Pennacchio LA. Comparative genomic analysis reveals a distant liver enhancer upstream of the COUP-TFII gene. Mamm. Genome, 16(2):91-5.
    COUP-TFII is a central nuclear hormone receptor that tightly regulates the expression of numerous target lipid metabolism genes in vertebrates. However, it remains unclear how COUP-TFII itself is transcriptionally controlled since studies with its promoter and upstream region fail to recapitulate the gene's liver expression. In an attempt to identify liver enhancers in the vicinity of COUP-TFII, we employed a comparative genomic approach. Initial comparisons between humans and mice of the 3470-kb gene-poor region surrounding COUP-TFII revealed 2023 conserved noncoding elements. To prioritize a subset of these elements for functional studies, we performed further genomic comparisons with the orthologous pufferfish (Fugu rubripes) locus and uncovered two anciently conserved noncoding sequences (CNS) upstream of COUP-TFII (CNS-62kb and CNS-66kb). Testing these two elements using reporter constructs in liver cells (HepG2) revealed that CNS-66kb, but not CNS-62kb, yielded robust in vitro enhancer activity. In addition, an in vivo reporter assay using naked DNA transfer with CNS-66kb linked to luciferase displayed strong reproducible liver expression in adult mice, further supporting its role as a liver enhancer. Together, these studies further support the utility of comparative genomics to uncover gene regulatory sequences based on evolutionary conservation and provide the substrates to better understand the regulation and expression of COUP-TFII.
    Comments (post)
    There are no comments posted here... Yet.
  15. (2004) Tripodi M, Filosa A, Armentano M, Studer M. The COUP-TF nuclear receptors regulate cell migration in the mammalian basal forebrain. Development, 131(24):6119-29.
    Cells migrate via diverse pathways and in different modes to reach their final destinations during development. Tangential migration has been shown to contribute significantly to the generation of neuronal diversity in the mammalian telencephalon. GABAergic interneurons are the best-characterized neurons that migrate tangentially, from the ventral telencephalon, dorsally into the cortex. However, the molecular mechanisms and nature of these migratory pathways are only just beginning to be unravelled. In this study we have first identified a novel dorsal-to-ventral migratory route, in which cells migrate from the interganglionic sulcus, located in the basal telencephalon between the lateral and medial ganglionic eminences, towards the pre-optic area and anterior hypothalamus in the diencephalon. Next, with the help of transplantations and gain-of-function studies in organotypic cultures, we have shown that COUP-TFI and COUP-TFII are expressed in distinct and non-overlapping migratory routes. Ectopic expression of COUP-TFs induces an increased rate of cell migration and cell dispersal, suggesting roles in cellular adhesion and migration processes. Moreover, cells follow a distinct migratory path, dorsal versus ventral, which is dependent on the expression of COUP-TFI or COUP-TFII, suggesting an intrinsic role of COUP-TFs in guiding migrating neurons towards their target regions. Therefore, we propose that COUP-TFs are directly involved in tangential cell migration in the developing brain, through the regulation of short- and long-range guidance cues.
    Comments (post)
    There are no comments posted here... Yet.
  16. (2004) De Martino MU, Bhattachryya N, Alesci S, Ichijo T, Chrousos GP, Kino T. The glucocorticoid receptor and the orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II interact with and mutually affect each other's transcriptional activities: implications for intermediary metabolism. Mol. Endocrinol., 18(4):820-33.
    Glucocorticoids exert their metabolic effect via their intracellular receptor, the glucocorticoid receptor (GR). In a yeast two-hybrid screening, we found the chicken ovalbumin upstream promoter transcription factor II (COUP-TFII), an orphan nuclear receptor that plays important roles in glucose, cholesterol, and xenobiotic metabolism, as a partner of GR. In an in vitro glutathione-S-transferase pull-down assay, COUP-TFII interacted via its DNA-binding domain with the hinge regions of both GRalpha and its splicing variant GRbeta, whereas COUP-TFII formed a complex with GRalpha, but not with GRbeta, in an in vivo chromatin immunoprecipitation and a regular immunoprecipitation assay. Accordingly, GRalpha, but not GRbeta, enhanced COUP-TFII-induced transactivation of the simple COUP-TFII-responsive 7alpha-hydroxylase promoter through the transcriptional activity of its activation function-1 domain, whereas COUP-TFII repressed GRalpha-induced transactivation of the glucocorticoid-responsive promoter by attracting the silencing mediator for retinoid and thyroid hormone receptors. Importantly, mutual protein-protein interaction of GRalpha and COUP-TFII was necessary for glucocorticoid-induced enhancement of the promoter activity and the endogenous mRNA expression of the COUP-TFII-responsive phosphoenolpyruvate carboxykinase, the rate-limiting enzyme of hepatic gluconeogenesis. We suggest that COUP-TFII may participate in some of the metabolic effects of glucocorticoids through direct interactions with GRalpha. These interactions influence the transcription of both COUP-TFII- and GRalpha-responsive target genes, seem to be promoter specific, and can be in either a positive or negative direction.
    Comments (post)
    There are no comments posted here... Yet.
  17. (2001) Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science, 294(5548):1866-70.
    Cholesterol, fatty acids, fat-soluble vitamins, and other lipids present in our diets are not only nutritionally important but serve as precursors for ligands that bind to receptors in the nucleus. To become biologically active, these lipids must first be absorbed by the intestine and transformed by metabolic enzymes before they are delivered to their sites of action in the body. Ultimately, the lipids must be eliminated to maintain a normal physiological state. The need to coordinate this entire lipid-based metabolic signaling cascade raises important questions regarding the mechanisms that govern these pathways. Specifically, what is the nature of communication between these bioactive lipids and their receptors, binding proteins, transporters, and metabolizing enzymes that links them physiologically and speaks to a higher level of metabolic control? Some general principles that govern the actions of this class of bioactive lipids and their nuclear receptors are considered here, and the scheme that emerges reveals a complex molecular script at work.
    Comments (post)
    There are no comments posted here... Yet.
  18. (2000) Sladek R, Giguère V. Orphan nuclear receptors: an emerging family of metabolic regulators. Adv. Pharmacol., 47:23-87.
    Abstract not available.
    Comments (post)
    There are no comments posted here... Yet.
  19. (2000) Vaulont S, Vasseur-Cognet M, Kahn A. Glucose regulation of gene transcription. J. Biol. Chem., 275(41):31555-8.
    Abstract not available.
    Comments (post)
    There are no comments posted here... Yet.
  20. (1999) Pereira FA, Qiu Y, Zhou G, Tsai MJ, Tsai SY. The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev., 13(8):1037-49.
    The embryonic expression of COUP-TFII, an orphan nuclear receptor, suggests that it may participate in mesenchymal-epithelial interactions required for organogenesis. Targeted deletion of the COUP-TFII gene results in embryonic lethality with defects in angiogenesis and heart development. COUP-TFII mutants are defective in remodeling the primitive capillary plexus into large and small microcapillaries. In the COUP-TFII mutant heart, the atria and sinus venosus fail to develop past the primitive tube stage. Reciprocal interactions between the endothelium and the mesenchyme in the vascular system and heart are essential for normal development of these systems. In fact, the expression of Angiopoietin-1, a proangiogenic soluble factor thought to mediate the mesenchymal-endothelial interactions during heart development and vascular remodeling, is down-regulated in COUP-TFII mutants. This down-regulation suggests that COUP-TFII may be required for bidirectional signaling between the endothelial and mesenchymal compartments essential for proper angiogenesis and heart development.
    Comments (post)
    There are no comments posted here... Yet.
  21. (1999) Avram D, Ishmael JE, Nevrivy DJ, Peterson VJ, Lee SH, Dowell P, Leid M. Heterodimeric interactions between chicken ovalbumin upstream promoter-transcription factor family members ARP1 and ear2. J. Biol. Chem., 274(20):14331-6.
    Members of the chicken ovalbumin upstream promoter-transcription factor (COUP-TF) subfamily of orphan nuclear receptors, which minimally includes COUP-TFI and ARP1, are highly expressed in brain and are generally considered to be constitutive repressors of transcription. We have used a yeast two-hybrid system to isolate proteins expressed in brain that interact with ARP1. One of the proteins isolated in this screen was Ear2, another orphan receptor that has been suggested to be a member of the COUP-TF subfamily. Here we demonstrate that ARP1 and Ear2 form heterodimers in solution and on directly repeated response elements with high efficiency and a specificity differing from that of homodimeric complexes composed of either receptor. ARP1 and Ear2 were observed to interact in mammalian cells, and the tissue distribution of Ear2 transcripts was found to overlap precisely with the expression pattern of ARP1 in several mouse tissues and embryonal carcinoma cell lines. Heterodimeric interactions between ARP1 and Ear2 may define a distinct pathway of orphan receptor signaling.
    Comments (post)
    There are no comments posted here... Yet.
  22. (1999) Lou DQ, Tannour M, Selig L, Thomas D, Kahn A, Vasseur-Cognet M. Chicken ovalbumin upstream promoter-transcription factor II, a new partner of the glucose response element of the L-type pyruvate kinase gene, acts as an inhibitor of the glucose response. J. Biol. Chem., 274(40):28385-94.
    Transcription of the L-type pyruvate kinase (L-PK) gene is induced by glucose in the presence of insulin and repressed by glucagon via cyclic AMP. The DNA regulatory sequence responsible for mediating glucose and cyclic AMP responses, called glucose response element (GlRE), consists of two degenerated E boxes spaced by 5 base pairs and is able to bind basic helix-loop-helix/leucine zipper proteins, in particular the upstream stimulatory factors (USFs). From ex vivo and in vivo experiments, it appears that USFs are required for correct response of the L-PK gene to glucose, but their expression and binding activity are not known to be regulated by glucose. A genetic screen in yeast has allowed us to identify a novel transcriptional factor binding to the GlRE, i.e. the chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII). Binding of COUP-TFII to the GlRE was confirmed by electrophoretic mobility shift assays, and COUP-TFII-containing complexes were detectable in liver nuclear extracts. Neither abundance nor binding activity of COUP-TFII appeared to be significantly regulated by diets. In footprinting experiments, two COUP-TFII-binding sites overlapping the E boxes were detected. Overexpression of COUP-TFII abrogated the USF-dependent transactivation of an artificial GlRE-dependent promoter in COS cells and the glucose responsiveness of the L-PK promoter in hepatocytes in primary culture. In addition, a mutated GlRE with increased affinity for USF and very low affinity for COUP-TFII conferred a dramatically decreased glucose responsiveness on the L-PK promoter in hepatocytes in primary culture by increasing activity of the reporter gene in low glucose condition. We propose that COUP-TFII could be a negative regulatory component of the glucose sensor complex assembled on the GlRE of the L-PK gene and most likely of other glucose-responsive genes as well.
    Comments (post)
    There are no comments posted here... Yet.
  23. (1998) Bailey P, Sartorelli V, Hamamori Y, Muscat GE. The orphan nuclear receptor, COUP-TF II, inhibits myogenesis by post-transcriptional regulation of MyoD function: COUP-TF II directly interacts with p300 and myoD. Nucleic Acids Res., 26(23):5501-10.
    COUP-TF II is an orphan nuclear receptor that has no known ligand in the 'classical sense'. COUP-TF interacts with the corepressors N-CoR, SMRT and RIP13, and silences transcription by active repression and trans-repression. Forced expression of the orphan nuclear receptor COUP-TF II in mouse C2 myogenic cells has been demonstrated to inhibit morphological differentiation, and to repress the expression of: (i) the myoD gene family which encodes myogenic basic helix-loop-helix (bHLH) proteins; and (ii) the cell cycle regulator, p21(Waf-1/Cip-1). In the present study, we show that COUP-TF II efficiently inhibits the myoD -mediated myogenic conversion of pluripotential C3H10T1/2 cells by post-transcriptional mechanisms. Furthermore, repression of MyoD-dependent transcription by COUP-TF II occurs in the absence of the nuclear receptor cognate binding motif. The inhibition of MyoD-mediated trans-activation involves the direct binding of the DNA binding domain/C-region and hinge/D-regions [i.e. amino acid (aa) residues 78-213] of COUP-TF II to the N-terminal activation domain of MyoD. Over-expression of the cofactor p300, which functions as a coactivator of myoD-mediated transcription, alleviated repression by COUP-TF II. Further binding analysis demonstrated that COUP-TF II interacted with the N-terminal 149 aa residues of p300 which encoded the receptor interaction domain of the coactivator. Finally we observed that COUP-TF II, MyoD and p300 interact in a competitive manner, and that increasing amounts of COUP-TF II have the ability to reduce the interaction between myoD and p300 invitro. The experiments presented herein suggest thatCOUP-TF II post-transcriptionally regulates myoD activity/function, and that crosstalk between orphan nuclear receptors and the myogenic bHLH proteins has functional consequences for differentiation.
    Comments (post)
    There are no comments posted here... Yet.
  24. (1997) Tsai SY, Tsai MJ. Chick ovalbumin upstream promoter-transcription factors (COUP-TFs): coming of age. Endocr. Rev., 18(2):229-40.
    Abstract not available.
    Comments (post)
    There are no comments posted here... Yet.
  25. (1997) Achatz G, Hölzl B, Speckmayer R, Hauser C, Sandhofer F, Paulweber B. Functional domains of the human orphan receptor ARP-1/COUP-TFII involved in active repression and transrepression. Mol. Cell. Biol., 17(9):4914-32.
    The orphan receptor ARP-1/COUP-TFII, a member of the chicken ovalbumin upstream promoter transcription factor (COUP-TF) subfamily of nuclear receptors, strongly represses transcriptional activity of numerous genes, including several apolipoprotein-encoding genes. Recently it has been demonstrated that the mechanism by which COUP-TFs reduce transcriptional activity involves active repression and transrepression. To map the domains of ARP-1/COUP-TFII required for repressor activity, a detailed deletion analysis of the protein was performed. Chimeric proteins in which various segments of the ARP-1/COUP-TFII carboxy terminus were fused to the GAL4 DNA binding domain were used to characterize its active repression domain. The smallest segment confering active repressor activity to a heterologous DNA binding domain was found to comprise residues 210 to 414. This domain encompasses the region of ARP-1/COUP-TFII corresponding to helices 3 to 12 in the recently published crystal structure of other members of the nuclear receptor superfamily. It includes the AF-2 AD core domain formed by helix 12 but not the hinge region, which is essential for interaction with a corepressor in the case of the thyroid hormone and retinoic acid receptor. Attachment of the nuclear localization signal from the simian virus 40 large T antigen (Flu tag) to the amino terminus of ARP-1/COUP-TFII abolished its ability to bind to DNA without affecting its repressor activity. By using a series of Flu-tagged mutants, the domains required for transrepressor activity of the protein were mapped. They include the DNA binding domain and the segment spanning residues 193 to 399. Transcriptional activity induced by liver-enriched transactivators such as hepatocyte nuclear factor 3 (HNF-3), C/EBP, or HNF-4 was repressed by ARP-1/COUP-TFII independent of the presence of its cognate binding site, while basal transcription or transcriptional activity induced by ATF or Sp1 was not perturbed by the protein. In conclusion, our results demonstrate that the domains of ARP-1/COUP-TFII required for active repression and transrepression do not coincide. Moreover, they strongly suggest that transrepression is the predominant mechanism underlying repressor activity of ARP-1/COUP-TFII. This mechanism most likely involves interaction of the protein with one or several transcriptional coactivator proteins which are employed by various liver-enriched transactivators but not by ubiquitous factors such as Sp1 or ATF.
    Comments (post)
    There are no comments posted here... Yet.
  26. (1996) Disch DL, Rader TA, Cresci S, Leone TC, Barger PM, Vega R, Wood PA, Kelly DP. Transcriptional control of a nuclear gene encoding a mitochondrial fatty acid oxidation enzyme in transgenic mice: role for nuclear receptors in cardiac and brown adipose expression. Mol. Cell. Biol., 16(8):4043-51.
    Expression of the gene encoding medium-chain acyl coenzyme A dehydrogenase (MCAD), a nuclearly encoded mitochondrial fatty acid beta-oxidation enzyme, is regulated in parallel with fatty acid oxidation rates among tissues and during development. We have shown previously that the human MCAD gene promoter contains a pleiotropic element (nuclear receptor response element [NRRE-1]) that confers transcriptional activation or repression by members of the nuclear receptor superfamily. Mice transgenic for human MCAD gene promoter fragments fused to a chloramphenicol acetyltransferase gene reporter were produced and characterized to evaluate the role of NRRE-1 and other promoter elements in the transcriptional control of the MCAD gene in vivo. Expression of the full-length MCAD promoter-chloramphenicol acetyltransferase transgene (MCADCAT.371) paralleled the known tissue-specific differences in mitochondrial beta-oxidation rates and MCAD expression. MCADCAT.371 transcripts were abundant in heart tissue and brown adipose tissue, tissues with high-level MCAD expression. During perinatal cardiac developmental stages, expression of the MCADCAT.371 transgene paralleled mouse MCAD mRNA levels. In contrast, expression of a mutant MCADCAT transgene, which lacked NRRE-1 (MCADCATdeltaNRRE-1), was not enriched in heart or brown adipose tissue and did not exhibit appropriate postnatal induction in the developing heart. Transient-transfection studies with MCAD promoter-luciferase constructs containing normal or mutant NRRE-1 sequences demonstrated that the nuclear receptor binding sequences within NRRE-1 are necessary for high-level transcriptional activity in primary rat cardiocytes. Electrophoretic mobility shift assays demonstrated that NRRE-1 was bound by several cardiac and brown adipose nuclear proteins and that these interactions required the NRRE-1 receptor binding hexamer sequences. Antibody supershift studies identified the orphan nuclear receptor COUP-TF as one of the endogenous cardiac proteins which bound NRRE-1. These results dictate an important role for nuclear receptors in the transcriptional control of a nuclear gene encoding a mitochondrial fatty acid oxidation enzyme and identify a gene regulatory pathway involved in cardiac energy metabolism.
    Comments (post)
    There are no comments posted here... Yet.
  27. (1995) Butler AJ, Parker MG. COUP-TF II homodimers are formed in preference to heterodimers with RXR alpha or TR beta in intact cells. Nucleic Acids Res., 23(20):4143-50.
    Chicken ovalbumin upstream promoter-transcription factor (COUP-TF) represses the transcriptional activity of a number of nuclear receptors, including that of retinoid receptors (RAR and RXR) and thyroid hormone receptors (TR). Since COUP-TF is capable of binding to DNA in vitro either as a homodimer or as a heterodimer with RXR or TR, it has not been possible to distinguish between competitive DNA binding and heterodimer formation as a mechanism to account for the repression. Using a two-hybrid system we have investigated the dimerisation properties of COUP-TF II in intact cells. In conditions where COUP-TF II homodimers and RXR alpha-RAR alpha heterodimers were formed we were unable to detect the formation of heterodimers between COUP-TF II and RXR alpha. Moreover, we were unable to detect an interaction between COUP-TF II and RXR alpha on DNA. Similarly COUP-TF II homodimers and RXR alpha-TR beta heterodimers are favoured over COUP-TF II-TR beta heterodimers. We conclude that the formation of functionally inactive heterodimers is unlikely to represent a general mechanism by which COUP-TF represses the transcriptional activity of nuclear receptors and favour a model in which repression is mediated by COUP-TF homodimers competing for binding to DNA.
    Comments (post)
    There are no comments posted here... Yet.
  28. (2012) Boutant M, Ramos OH, Tourrel-Cuzin C, Movassat J, Ilias A, Vallois D, Planchais J, Pégorier JP, Schuit F, Petit PX, Bossard P, Maedler K, Grapin-Botton A, Vasseur-Cognet M. COUP-TFII Controls Mouse Pancreatic β-Cell Mass through GLP-1-β-Catenin Signaling Pathways. PLoS ONE, 7(1):e30847.
    The control of the functional pancreatic β-cell mass serves the key homeostatic function of releasing the right amount of insulin to keep blood sugar in the normal range. It is not fully understood though how β-cell mass is determined.
    Comments (post)
    There are no comments posted here... Yet.
  29. (2011) Rosa A, Brivanlou AH. A regulatory circuitry comprised of miR-302 and the transcription factors OCT4 and NR2F2 regulates human embryonic stem cell differentiation. EMBO J., 30(2):237-48.
    Multiple levels of control are in play to regulate pluripotency and differentiation in human embryonic stem cells (hESCs). At the transcriptional level, the core factors OCT4, NANOG and SOX2 form a positive autoregulatory loop that is pivotal for maintaining the undifferentiated state. At the post-transcriptional level, microRNAs (miRNAs) belonging to the miR-302 family are emerging as key players in the control of proliferation and cell fate determination during differentiation. Here, we show that the transcriptional factors OCT4 and NR2F2 (COUP-TFII) and the miRNA miR-302 are linked in a regulatory circuitry that critically regulate both pluripotency and differentiation in hESCs. In the undifferentiated state, both OCT4 and the OCT4-induced miR-302 directly repress NR2F2 at the transcriptional and post-transcriptional level, respectively. Conversely, NR2F2 directly inhibits OCT4 during differentiation, triggering a positive feedback loop for its own expression. In addition, we show that regulation of NR2F2 activity itself relies on alternative splicing and transcriptional start site choice to generate a full-length transcriptionally active isoform and shorter variants, which enhance the activity of the long isoform. During hESC differentiation, NR2F2 is first detected at the earliest steps of neural induction and thus is among the earliest human embryonic neural markers. Finally, our functional analysis points to a crucial role for NR2F2 in the activation of neural genes during early differentiation in humans. These findings introduce a new molecular player in the context of early embryonic stem cell state and cell fate determination in humans.
    Comments (post)
    There are no comments posted here... Yet.
  30. (2010) Sabra-Makke L, Tourrel-Cuzin C, Denis RG, Moldes M, Pégorier JP, Luquet S, Vasseur-Cognet M, Bossard P. The nutritional induction of COUP-TFII gene expression in ventromedial hypothalamic neurons is mediated by the melanocortin pathway. PLoS ONE, 5(10):e13464.
    The nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is an important coordinator of glucose homeostasis. We report, for the first time, a unique differential regulation of its expression by the nutritional status in the mouse hypothalamus compared to peripheral tissues.
    Comments (post)
    There are no comments posted here... Yet.
  31. (2009) Okamura M, Kudo H, Wakabayashi K, Tanaka T, Nonaka A, Uchida A, Tsutsumi S, Sakakibara I, Naito M, Osborne TF, Hamakubo T, Ito S, Aburatani H, Yanagisawa M, Kodama T, Sakai J. COUP-TFII acts downstream of Wnt/beta-catenin signal to silence PPARgamma gene expression and repress adipogenesis. Proc. Natl. Acad. Sci. U.S.A., 106(14):5819-24.
    Wnt signaling through beta-catenin and TCF maintains preadipocytes in an un-differentiated proliferative state; however, the molecular pathway has not been completely defined. By integrating gene expression microarray, chromatin immunoprecipitation-chip, and cell-based experimental approaches, we show that Wnt/beta-catenin signaling activates the expression of COUP-TFII which recruits the SMRT corepressor complex to the first introns located downstream from the first exons of both PPARgamma1 and gamma2 mRNAs. This maintains the local chromatin in a hypoacetylated state and represses PPARgamma gene expression to inhibit adipogenesis. Our experiments define the COUP-TFII/SMRT complex as a previously unappreciated component of the linear pathway that directly links Wnt/beta-catenin signaling to repression of PPARgamma gene expression and the inhibition of adipogenesis.
    Comments (post)
    There are no comments posted here... Yet.
  32. (2009) Swift MR, Weinstein BM. Arterial-venous specification during development. Circ. Res., 104(5):576-88.
    The major arteries and veins of the vertebrate circulatory system are formed early in embryonic development, before the onset of circulation, following de novo aggregation of "angioblast" progenitors in a process called vasculogenesis. Initial embryonic determination of artery or vein identity is regulated by variety of genetic factors that work in concert to specify endothelial cell fate, giving rise to 2 distinct components of the circulatory loop possessing unique structural characteristics. Work in multiple in vivo animal model systems has led to a detailed examination of the interacting partners that determine arterial and venous specification. We discuss the hierarchical arrangement of many signaling molecules, including Hedgehog (Hh), vascular endothelial growth factor (VEGF), Notch, and chicken ovalbumin upstream-transcription factor II (COUP-TFII) that promote or inhibit divergent pathways of endothelial cell fate. Elucidation of the functional role of these genetic determinants of blood vessel specification together with the epigenetic factors involved in subsequent modification of arterial-venous identity will allow for potential new therapeutic targets for vascular disorders.
    Comments (post)
    There are no comments posted here... Yet.
  33. (2009) Kim BJ, Takamoto N, Yan J, Tsai SY, Tsai MJ. Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII) regulates growth and patterning of the postnatal mouse cerebellum. Dev. Biol., 326(2):378-91.
    COUP-TFII (also known as Nr2f2), a member of the nuclear orphan receptor superfamily, is expressed in several regions of the central nervous system (CNS), including the ventral thalamus, hypothalamus, midbrain, pons, and spinal cord. To address the function of COUP-TFII in the CNS, we generated conditional COUP-TFII knockout mice using a tissue-specific NSE-Cre recombinase. Ablation of COUP-TFII in the brain resulted in malformation of the lobule VI in the cerebellum and a decrease in differentiation of cerebellar neurons and cerebellar growth. The decrease in cerebellar growth in NSE(Cre/+)/CII(F/F) mice is due to reduced proliferation and increased apoptosis in granule cell precursors (GCPs). Additional studies demonstrated that insulin like growth factor 1 (IGF-1) expression was reduced in the cerebellum of NSE(Cre/+)/CII(F/F) mice, thereby leading to decreased Akt1 and GSK-3beta activities, and the reduced expression of mTOR. Using ChIP assays, we demonstrated that COUP-TFII was recruited to the promoter region of IGF-1 in a Sp1-dependent manner. In addition, dendritic branching of Purkinje cells was decreased in the mutant mice. Thus, our results indicate that COUP-TFII regulates growth and maturation of the mouse postnatal cerebellum through modulation of IGF-1 expression.
    Comments (post)
    There are no comments posted here... Yet.
  34. (2009) Lee S, Kang J, Yoo J, Ganesan SK, Cook SC, Aguilar B, Ramu S, Lee J, Hong YK. Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate. Blood, 113(8):1856-9.
    Specification of endothelial cell (EC) fate during vascular development is controlled by distinct key regulators. While Notch plays an essential role in induction of arterial phenotypes, COUP-TFII is required to maintain the venous EC identity. Homeodomain transcription factor Prox1 functions to reprogram venous ECs to lymphatic endothelial cells (LECs). Here, we report that the venous EC fate regulator COUP-TFII is expressed in LECs throughout development and physically interacts with Prox1 to form a stable complex in various cell types including LECs. We found that COUP-TFII functions as a coregulator of Prox1 to control several lineage-specific genes including VEGFR-3, FGFR-3, and neuropilin-1 and is required along with Prox1 to maintain LEC phenotype. Together, we propose that the physical and functional interactions of the 2 proteins constitute an essential part in the program specifying LEC fate and may provide the molecular basis for the hypothesis of venous EC identity being the prerequisite for LEC specification.
    Comments (post)
    There are no comments posted here... Yet.
  35. (2009) Li L, Xie X, Qin J, Jeha GS, Saha PK, Yan J, Haueter CM, Chan L, Tsai SY, Tsai MJ. The nuclear orphan receptor COUP-TFII plays an essential role in adipogenesis, glucose homeostasis, and energy metabolism. Cell Metab., 9(1):77-87.
    Adipose tissue development and function play a central role in the pathogenesis and pathophysiology of metabolic syndromes. Here, we show that chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) plays a pivotal role in adipogenesis and energy homeostasis. COUP-TFII is expressed in the early stages of white adipocyte development. COUP-TFII heterozygous mice (COUP-TFII(+/-)) have much less white adipose tissue (WAT) than wild-type mice (COUP-TFII(+/+)). COUP-TFII(+/-) mice display a decreased expression of key regulators for WAT development. Knockdown COUP-TFII in 3T3-L1 cells resulted in an increased expression of Wnt10b, while chromatin immunoprecipitation analysis revealed that Wnt10b is a direct target of COUP-TFII. Moreover, COUP-TFII(+/-) mice have increased mitochondrial biogenesis in WAT, and COUP-TFII(+/-) mice have improved glucose homeostasis and increased energy expenditure. Thus, COUP-TFII regulates adipogenesis by regulating the key molecules in adipocyte development and can serve as a target for regulating energy metabolism.
    Comments (post)
    There are no comments posted here... Yet.
  36. (2008) Xu Z, Yu S, Hsu CH, Eguchi J, Rosen ED. The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II is a critical regulator of adipogenesis. Proc. Natl. Acad. Sci. U.S.A., 105(7):2421-6.
    The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII; Nr2f2) is expressed in adipose tissue in vivo and declines during differentiation. Overexpression of COUP-TFII prevents adipogenesis, whereas shRNA-mediated reduction of COUP-TFII promotes differentiation, as shown by increased lipid accumulation and elevated expression of fat cell marker proteins. Furthermore, reduction of COUP-TFII allows uncommitted fibroblasts to be differentiated into fat cells. COUP-TFII represses the expression of a number of proadipogenic factors in adipocytes, with direct action noted at the CAAT enhancer-binding protein alpha promoter. We show that COUP-TFII acts downstream of hedgehog signaling and is required for the full antiadipogenic effect of this pathway. This effect is mediated in part by interaction with GATA factors. COUP-TFII and GATA2 are physically associated and repress target gene expression in an additive manner. Taken together, our data demonstrate that COUP-TFII represents an endogenous suppressor of adipogenesis, linking antiadipogenic extracellular signals to the core transcriptional cascade.
    Comments (post)
    There are no comments posted here... Yet.
  37. (2008) Qin J, Tsai MJ, Tsai SY. Essential roles of COUP-TFII in Leydig cell differentiation and male fertility. PLoS ONE, 3(9):e3285.
    Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII; also known as NR2F2), is an orphan nuclear receptor of the steroid/thyroid hormone receptor superfamily. COUP-TFII-null mice die during the early embryonic development due to angiogenesis and cardiovascular defects. To circumvent the early embryonic lethality and investigate the physiological function of COUP-TFII, we knocked out COUP-TFII gene in a time-specific manner by using a tamoxifen inducible Cre recombinase. The ablation of COUP-TFII during pre-pubertal stages of male development results in infertility, hypogonadism and spermatogenetic arrest. Homozygous adult male mutants are defective in testosterone synthesis, and administration of testosterone could largely rescue the mutant defects. Notably, the rescued results also provide the evidence that the major function of adult Leydig cell is to synthesize testosterone. Further phenotypic analysis reveals that Leydig cell differentiation is arrested at the progenitor cell stage in the testes of null mice. The failure of testosterone to resumption of Leydig cell maturation in the null mice indicates that COUP-TFII itself is essential for this process. In addition, we identify that COUP-TFII plays roles in progenitor Leydig cell formation and early testis organogenesis, as demonstrated by the ablation of COUP-TFII at E18.5. On the other hand, when COUP-TFII is deleted in the adult stage after Leydig cells are well differentiated, there are no obvious defects in reproduction and Leydig cell function. Taken together, these results indicate that COUP-TFII plays a major role in differentiation, but not the maintenance of Leydig cells.
    Comments (post)
    There are no comments posted here... Yet.
  38. (2008) Naka H, Nakamura S, Shimazaki T, Okano H. Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nat. Neurosci., 11(9):1014-23.
    In the developing CNS, subtypes of neurons and glial cells are generated according to a schedule that is defined by cell-intrinsic mechanisms that function at the progenitor-cell level. However, no critical molecular switch for the temporal specification of CNS progenitor cells has been identified. We found that chicken ovalbumin upstream promoter-transcription factor I and II (Coup-tfI and Coup-tfII, also known as Nr2f1 and Nr2f2) are required for the temporal specification of neural stem/progenitor cells (NSPCs), including their acquisition of gliogenic competence, as demonstrated by their responsiveness to gliogenic cytokines. COUP-TFI and II are transiently co-expressed in the ventricular zone of the early embryonic CNS. The double knockdown of Coup-tfI/II in embryonic stem cell (ESC)-derived NSPCs and the developing mouse forebrain caused sustained neurogenesis and the prolonged generation of early-born neurons. These findings reveal a part of the timer mechanisms for generating diverse types of neurons and glial cells during CNS development.
    Comments (post)
    There are no comments posted here... Yet.
  39. (2008) Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9:40.
    BACKGROUND: Prediction of 3-dimensional protein structures from amino acid sequences represents one of the most important problems in computational structural biology. The community-wide Critical Assessment of Structure Prediction (CASP) experiments have been designed to obtain an objective assessment of the state-of-the-art of the field, where I-TASSER was ranked as the best method in the server section of the recent 7th CASP experiment. Our laboratory has since then received numerous requests about the public availability of the I-TASSER algorithm and the usage of the I-TASSER predictions. RESULTS: An on-line version of I-TASSER is developed at the KU Center for Bioinformatics which has generated protein structure predictions for thousands of modeling requests from more than 35 countries. A scoring function (C-score) based on the relative clustering structural density and the consensus significance score of multiple threading templates is introduced to estimate the accuracy of the I-TASSER predictions. A large-scale benchmark test demonstrates a strong correlation between the C-score and the TM-score (a structural similarity measurement with values in [0, 1]) of the first models with a correlation coefficient of 0.91. Using a C-score cutoff > -1.5 for the models of correct topology, both false positive and false negative rates are below 0.1. Combining C-score and protein length, the accuracy of the I-TASSER models can be predicted with an average error of 0.08 for TM-score and 2 A for RMSD. CONCLUSION: The I-TASSER server has been developed to generate automated full-length 3D protein structural predictions where the benchmarked scoring system helps users to obtain quantitative assessments of the I-TASSER models. The output of the I-TASSER server for each query includes up to five full-length models, the confidence score, the estimated TM-score and RMSD, and the standard deviation of the estimations. The I-TASSER server is freely available to the academic community at http://zhang.bioinformatics.ku.edu/I-TASSER.
    Comments (post)
    There are no comments posted here... Yet.
  40. (2008) Kruse SW, Suino-Powell K, Zhou XE, Kretschman JE, Reynolds R, Vonrhein C, Xu Y, Wang L, Tsai SY, Tsai MJ, Xu HE. Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor. PLoS Biol., 6(9):e227.
    The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 A crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix alpha10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation.
    Comments (post)
    There are no comments posted here... Yet.
  41. (2007) Kurihara I, Lee DK, Petit FG, Jeong J, Lee K, Lydon JP, DeMayo FJ, Tsai MJ, Tsai SY. COUP-TFII mediates progesterone regulation of uterine implantation by controlling ER activity. PLoS Genet., 3(6):e102.
    Progesterone and estrogen are critical regulators of uterine receptivity. To facilitate uterine remodeling for embryo attachment, estrogen activity in the uterine epithelia is attenuated by progesterone; however, the molecular mechanism by which this occurs is poorly defined. COUP-TFII (chicken ovalbumin upstream promoter transcription factor II; also known as NR2F2), a member of the nuclear receptor superfamily, is highly expressed in the uterine stroma and its expression is regulated by the progesterone-Indian hedgehog-Patched signaling axis that emanates from the epithelium. To further assess COUP-TFII uterine function, a conditional COUP-TFII knockout mouse was generated. This mutant mouse is infertile due to implantation failure, in which both embryo attachment and uterine decidualization are impaired. Using this animal model, we have identified a novel genetic pathway in which BMP2 lies downstream of COUP-TFII. Epithelial progesterone-induced Indian hedgehog regulates stromal COUP-TFII, which in turn controls BMP2 to allow decidualization to manifest in vivo. Interestingly, enhanced epithelial estrogen activity, which impedes maturation of the receptive uterus, was clearly observed in the absence of stromal-derived COUP-TFII. This finding is consistent with the notion that progesterone exerts its control of implantation through uterine epithelial-stromal cross-talk and reveals that stromal-derived COUP-TFII is an essential mediator of this complex cross-communication pathway. This finding also provides a new signaling paradigm for steroid hormone regulation in female reproductive biology, with attendant implications for furthering our understanding of the molecular mechanisms that underlie dysregulation of hormonal signaling in such human reproductive disorders as endometriosis and endometrial cancer.
    Comments (post)
    There are no comments posted here... Yet.
  42. (2007) Gofflot F, Chartoire N, Vasseur L, Heikkinen S, Dembele D, Le Merrer J, Auwerx J. Systematic gene expression mapping clusters nuclear receptors according to their function in the brain. Cell, 131(2):405-18.
    Nuclear receptors (NRs) compose a large family of transcription factors that operate at the interface between genes and environment, acting as sensors and effectors that translate endocrine and metabolic cues into well-defined gene expression programs. We report here on a systematic quantitative and anatomical expression atlas of the 49 NR genes in 104 regions of the adult mouse brain, organized in the interactive MousePat database. MousePat defines NR expression patterns to cellular resolution, a requirement for functional genomic strategies to understand the function of a highly heterogeneous and complex organ such as the brain. Using MousePat data, NR expression patterns can be clustered into anatomical and regulatory networks that delineate the role of NRs in brain functions, like the control of feeding and learning/memory. Mining the MousePat resource will improve the understanding of NR function in the brain and elucidate hierarchical networks that control behavior and whole body homeostasis.
    Comments (post)
    There are no comments posted here... Yet.
  43. (2005) Takamoto N, You LR, Moses K, Chiang C, Zimmer WE, Schwartz RJ, DeMayo FJ, Tsai MJ, Tsai SY. COUP-TFII is essential for radial and anteroposterior patterning of the stomach. Development, 132(9):2179-89.
    COUP-TFII, an orphan member of the steroid receptor superfamily, has been implicated in mesenchymal-epithelial interaction during organogenesis. The generation of a lacZ knock-in allele in the COUP-TFII locus in mice allows us to use X-gal staining to follow the expression of COUP-TFII in the developing stomach. We found COUP-TFII is expressed in the mesenchyme and the epithelium of the developing stomach. Conditional ablation of floxed COUP-TFII by Nkx3-2Cre recombinase in the gastric mesenchyme results in dysmorphogenesis of the developing stomach manifested by major patterning defects in posteriorization and radial patterning. The epithelial outgrowth, the expansion of the circular smooth muscle layer and enteric neurons as well as the posteriorization of the stomach resemble phenotypes exhibited by inhibition of hedgehog signaling pathways. Using organ cultures and cyclopamine treatment, we showed downregulation of COUP-TFII level in the stomach, suggesting COUP-TFII as a target of hedgehog signaling in the stomach. Our results are consistent with a functional link between hedgehog proteins and COUP-TFII, factors that are vital for epithelial-mesenchymal interactions.
    Comments (post)
    There are no comments posted here... Yet.
  44. (2004) Lee CT, Li L, Takamoto N, Martin JF, Demayo FJ, Tsai MJ, Tsai SY. The nuclear orphan receptor COUP-TFII is required for limb and skeletal muscle development. Mol. Cell. Biol., 24(24):10835-43.
    The nuclear orphan receptor COUP-TFII is widely expressed in multiple tissues and organs throughout embryonic development, suggesting that COUP-TFII is involved in multiple aspects of embryogenesis. Because of the early embryonic lethality of COUP-TFII knockout mice, the role of COUP-TFII during limb development has not been determined. COUP-TFII is expressed in lateral plate mesoderm of the early embryo prior to limb bud formation. In addition, COUP-TFII is also expressed in the somites and skeletal muscle precursors of the limbs. Therefore, in order to study the potential role of COUP-TFII in limb and skeletal muscle development, we bypassed the early embryonic lethality of the COUP-TFII mutant by using two methods. First, embryonic chimera analysis has revealed an obligatory role for COUP-TFII in limb bud outgrowth since mutant cells are unable to contribute to the distally growing limb mesenchyme. Second, we used a conditional-knockout approach to ablate COUP-TFII specifically in the limbs. Loss of COUP-TFII in the limbs leads to hypoplastic skeletal muscle development, as well as shorter limbs. Taken together, our results demonstrate that COUP-TFII plays an early role in limb bud outgrowth but not limb bud initiation. Also, COUP-TFII is required for appropriate development of the skeletal musculature of developing limbs.
    Comments (post)
    There are no comments posted here... Yet.
  45. (2003) Moré E, Fellner T, Doppelmayr H, Hauser-Kronberger C, Dandachi N, Obrist P, Sandhofer F, Paulweber B. Activation of the MAP kinase pathway induces chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) expression in human breast cancer cell lines. J. Endocrinol., 176(1):83-94.
    Growth factors are essential for cellular growth and differentiation in both normal and malignant human breast epithelial cells. In the present study we investigated the effect of epidermal growth factor (EGF), transforming growth factor alpha (TGFalpha) and phorbol myristate acetate (PMA) on chicken ovalbumin upstream promoter-transcription factor (COUP-TF) expression in human breast cancer cells. The orphan receptors COUP-TFI and COUP-TFII are members of the nuclear receptor superfamily. The high degree of evolutionary conservation of these proteins strongly argues for an important biological function. COUP-TF expression was highest in SK-BR3 cells (approximately 130 amol/ micro g total RNA), while the lowest COUP-TF expression was observed in MCF-7 cells (3.5 amol/ micro g total RNA). While treatment of EGF, TGFalpha and PMA induced expression of COUP-TFII, COUP-TFI did not respond to these agents. Oncostatin M (OSM) is known to exert an antiproliferative effect in breast cancer cells. Treatment of MCF-7 cells with OSM resulted in an approximately 90% reduction of COUP-TFII mRNA expression. In SK-BR3 cells, treatment with the MEK inhibitor UO126 resulted in a profound suppression of endogenous COUP-TFII expression. Furthermore, cotreatment with UO126 prevented induction of COUP-TFII expression by EGF in MCF-7 cells. In conclusion, our data provide evidence, for the first time, that mitogenic substances which activate the MAP kinase pathway, can induce COUP-TFII expression. Our results strongly suggest that an active MAP kinase pathway is essential for COUP-TFII expression in human breast cancer cells.
    Comments (post)
    There are no comments posted here... Yet.
  46. (2001) Huggins GS, Bacani CJ, Boltax J, Aikawa R, Leiden JM. Friend of GATA 2 physically interacts with chicken ovalbumin upstream promoter-TF2 (COUP-TF2) and COUP-TF3 and represses COUP-TF2-dependent activation of the atrial natriuretic factor promoter. J. Biol. Chem., 276(30):28029-36.
    Friend of GATA (FOG)-2 is a multi-zinc finger transcriptional corepressor protein that binds specifically to GATA4. Gene targeting studies have demonstrated that FOG-2 is required for normal cardiac morphogenesis, including the development of the coronary vasculature, left ventricular compact zone, and heart valves. To better understand the molecular mechanisms by which FOG-2 regulates these cardiac developmental programs, we screened a mouse day 11 embryo library using a yeast two-hybrid interaction trap with the fifth and sixth zinc fingers of FOG-2 as bait. Using this approach, we isolated clones encoding the orphan nuclear receptors chicken ovalbumin upstream promoter-transcription factor (COUP-TF) 2 and COUP-TF3. COUP-TF2-null embryos die during embryonic development with defective angiogenesis and cardiac defects, a pattern that partly resembles the FOG-2-null phenotype. The interaction between COUP-TF2 and FOG-2 in mammalian cells was confirmed by co-immunoprecipitation of these proteins from transfected COS-7 cells. The sites of binding interaction between COUP-TF2 and FOG-2 were mapped to zinc fingers 5 and 6 and fingers 7 and 8 of FOG-2 and to the carboxyl terminus of the COUP-TF proteins. Binding to COUP-TF2 was specific because FOG-2 did not interact with the ligand-binding domains of retinoid X receptor alpha, glucocorticoid receptor, and peroxisome proliferating antigen receptor gamma, which are related to the COUP-TF proteins. Full-length FOG-2 markedly enhanced transcriptional repression by GAL4-COUP-TF2(117-414), but not by a COUP-TF2 repression domain mutant. Moreover, FOG-2 repressed COUP-TF2dependent synergistic activation of the atrial natriuretic factor promoter by both GATA4 and the FOG-2-independent mutant GATA4-E215K. Taken together, these findings suggest that FOG-2 functions as a corepressor for both GATA and COUP-TF proteins.
    Comments (post)
    There are no comments posted here... Yet.
  47. (2001) Hatzis P, Talianidis I. Regulatory mechanisms controlling human hepatocyte nuclear factor 4alpha gene expression. Mol. Cell. Biol., 21(21):7320-30.
    Hepatocyte nuclear factor 4alpha (HNF-4alpha) (nuclear receptor 2A1) is an essential regulator of hepatocyte differentiation and function. Genetic and molecular evidence suggests that the tissue-restricted expression of HNF-4alpha is regulated mainly at the transcriptional level. As a step toward understanding the molecular mechanism involved in the transcriptional regulation of the human HNF-4alpha gene, we cloned and analyzed a 12.1-kb fragment of its upstream region. Major DNase I-hypersensitive sites were found at the proximal promoter, the first intron, and the more-upstream region comprising kb -6.5, -8.0, and -8.8. By the use of reporter constructs, we found that the proximal-promoter region was sufficient to drive high levels of hepatocyte-specific transcription in transient-transfection assays. DNase I footprint analysis and electrophoretic mobility shift experiments revealed binding sites for HNF-1alpha and -beta, Sp-1, GATA-6, and HNF-6. High levels of HNF-4alpha promoter activity were dependent on the synergism between either HNF-1alpha and HNF-6 or HNF-1beta and GATA-6, which implies that at least two alternative mechanisms may activate HNF-4alpha gene transcription. Chromatin immunoprecipitation experiments with human hepatoma cells showed stable association of HNF-1alpha, HNF-6, Sp-1, and COUP-TFII with the promoter. The last factor acts as a repressor via binding to a newly identified direct repeat 1 (DR-1) sequence of the human promoter, which is absent in the mouse homologue. We present evidence that this sequence is a bona fide retinoic acid response element and that HNF-4alpha expression is upregulated in vivo upon retinoic acid signaling.
    Comments (post)
    There are no comments posted here... Yet.
  48. (2000) Vlahou A, Flytzanis CN. Subcellular trafficking of the nuclear receptor COUP-TF in the early embryonic cell cycle. Dev. Biol., 218(2):284-98.
    The nuclear receptor SpCOUP-TF is the highly conserved sea urchin homologue of the COUP family of transcription factors. Previous results from our laboratory demonstrated that SpCOUP-TF transcripts are localized in the egg and asymmetrically distributed in the early embryonic blastomeres (A. Vlahou et al., 1996, Development 122, 521-526). To examine the subcellular localization of SpCOUP-TF protein, polyclonal antibodies were separately raised against the divergent N-terminus as well as the conserved DNA-binding and ligand-binding domains. Immunohistochemical analyses suggest that SpCOUP-TF is a maternal protein residing in the cytoplasm of the unfertilized egg. After fertilization, and as soon as the two-cell-stage embryo, most of the receptor translocates from the cytoplasm to the cell nuclei. During the rapid embryonic cell division, SpCOUP-TF was found to shuttle from the interphase nuclear periphery to the condensed chromosomes in mitosis, in a cell-cycle-dependent manner. In an attempt to confirm these observations, the subcellular localization of myc-tagged human COUP-TF I introduced into the sea urchin embryo by RNA injection of fertilized eggs was examined. The pattern of human COUP-TF I subcellular localization, detected with a monoclonal myc antibody, recapitulated the essential features described for the endogenous SpCOUP-TF trafficking. Replacement of the N-terminus of the human receptor with the unique sea urchin N-terminus enhanced its localization to the nuclear rim during interphase. Deletion of the DNA-binding domain of human COUP-TF I resulted in loss of all aspects of nuclear periphery and chromosomal localization. Taken together these data suggest that SpCOUP-TF transcriptional activity is keyed on a cell-cycle-dependent mechanism that regulates chromosomal protein traffic.
    Comments (post)
    There are no comments posted here... Yet.
  49. (2000) Avram D, Fields A, Pretty On Top K, Nevrivy DJ, Ishmael JE, Leid M. Isolation of a novel family of C(2)H(2) zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors. J. Biol. Chem., 275(14):10315-22.
    Two novel and related C(2)H(2) zinc finger proteins that are highly expressed in the brain, CTIP1 and CTIP2 (COUP TF-interacting proteins 1 and 2, respectively), were isolated and shown to interact with all members of the chicken ovalbumin upstream promoter transcription factor (COUP-TF) subfamily of orphan nuclear receptors. The interaction of CTIP1 with ARP1 was studied in detail, and CTIP1 was found to harbor two independent ARP1 interaction domains, ID1 and ID2, whereas the putative AF-2 of ARP1 was required for interaction with CTIP1. CTIP1, which exhibited a punctate staining pattern within the nucleus of transfected cells, recruited cotransfected ARP1 to these foci and potentiated ARP1-mediated transcriptional repression of a reporter construct. However, transcriptional repression mediated by ARP1 acting through CTIP1 did not appear to involve recruitment of a trichostatin A-sensitive histone deacetylase(s) to the template, suggesting that this repression pathway may be distinct from that utilized by several other nuclear receptors.
    Comments (post)
    There are no comments posted here... Yet.
  50. (1999) Suaud L, Hemimou Y, Formstecher P, Laine B. Functional study of the E276Q mutant hepatocyte nuclear factor-4alpha found in type 1 maturity-onset diabetes of the young: impaired synergy with chicken ovalbumin upstream promoter transcription factor II on the hepatocyte nuclear factor-1 promoter. Diabetes, 48(5):1162-7.
    Seven mutations in the hepatocyte nuclear factor (HNF)-4alpha gene have been shown to correlate with type 1 maturity-onset diabetes of the young (MODY 1), a monogenic form of type 2 diabetes. Up to now, only the functional properties of two MODY 1 HNF-4alpha mutants, Q268X and V393I, have been investigated to address how the mutations in the HNF-4alpha gene, found by genetic studies, can give rise to impaired activities of mutated HNF-4alpha proteins and can cause this disease. The E276Q mutation results in a nonconservative substitution occurring in the HNF-4alpha E domain, which is involved in dimerization and transactivation activities as well as in protein-protein interactions with other transcription factors or coactivators. Using the mutated human HNF-4alpha2, we have found that, in the absence of chicken ovalbumin upstream promoter transcription factor II (COUP TFII), the E276Q substitution does not significantly affect the dimerization and transactivating activities of HNF-4alpha, at least on the promoters studied herein. On the other hand, in the presence of COUP TFII, the substitution impairs the enhancement of HNF-4-mediated activation of HNF-1 promoter. The impaired synergy between COUP TFII and HNF-4 on the HNF-1 promoter results from an alteration of their interaction. HNF-1 expression plays a crucial role in transactivation of insulin promoter and of numerous genes coding for enzymes involved in glucose homeostasis. Therefore, its downregulation resulting from the E276Q mutation in HNF-4alpha gene most probably impairs the function of pancreatic beta-cells.
    Comments (post)
    There are no comments posted here... Yet.
  51. (1999) . A unified nomenclature system for the nuclear receptor superfamily. Cell, 97(2):161-3.
    Abstract not available.
    Comments (post)
    There are no comments posted here... Yet.
  52. (1998) Nakshatri H, Bhat-Nakshatri P. Multiple parameters determine the specificity of transcriptional response by nuclear receptors HNF-4, ARP-1, PPAR, RAR and RXR through common response elements. Nucleic Acids Res., 26(10):2491-9.
    A number of nuclear receptors, including retinoic acid receptors (RARs), retinoid-X receptors (RXRs), hepatocyte nuclear factor 4 (HNF-4), chicken ovalbumin upstream promoter transcription factor I (COUP-TFI), apolipoprotein regulatory protein 1 (ARP-1) and peroxisome proliferator-activated receptor (PPAR), bind to response elements comprised of two core motifs, 5'-RG(G/T)TCA, or a closely related sequence separated by 1 nt (DR1 elements). The potential role of the precise sequence of the core motif as well as the spacer nucleotide in determining specificity and promiscuity of receptor-response element interactions was investigated. We show here that nucleotides at base positions 1, 2 and 4 of the core motif as well as the spacer nucleotide determine the binding preference of HNF-4 and ARP-1 homodimers and RAR:RXR and PPAR:RXR heterodimers. In transfection experiments transcriptional activation by HNF-4 and PPAR:RXR and repression by ARP-1 correlated with the relative in vitro binding affinity provided the element was located within the proper promoter context. Furthermore, promoter context also determined whether an element that binds to HNF-4 and PPAR:RXR with equal affinity functions as an HNF-4 response element or PPAR response element. Thus, apart from the element-specific differences in affinity for the receptors, additional promoter-specific transcription factors that interact with HNF-4 and PPAR:RXR determine the specificity of transcriptional response through DR1-type elements.
    Comments (post)
    There are no comments posted here... Yet.
  53. (1996) Soosaar A, Neuman K, Nornes HO, Neuman T. Cell type specific regulation of COUP-TF II promoter activity. FEBS Lett., 391(1-2):95-100.
    COUP-TF family orphan receptors regulate activity of ligand-activated nuclear hormone receptors or function independently in the regulation of gene expression. COUP-TF II has a complex expression pattern suggesting that different mechanisms are involved in the regulation of its expression. We isolated the 5' regulatory region of the mouse COUP-TF II gene and demonstrated that the basal promoter is localized in a -200 bp region 5' from the transcription start site. All-trans retinoic acid and dibutyryl cyclic AMP have cell type specific effects on COUP-TF II promoter activity. The effect of cyclic AMP is mediated by the cyclic AMP response element that is localized 74 nucleotides upstream from the major transcriptional start. In vitro promoter analyses also demonstrated that the effect of all-trans RA is not directly mediated by the binding of RARs or RXRs to the promoter sequence.
    Comments (post)
    There are no comments posted here... Yet.
  54. (1995) Qiu Y, Krishnan V, Zeng Z, Gilbert DJ, Copeland NG, Gibson L, Yang-Feng T, Jenkins NA, Tsai MJ, Tsai SY. Isolation, characterization, and chromosomal localization of mouse and human COUP-TF I and II genes. Genomics, 29(1):240-6.
    Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) are orphan members of the steroid/thyroid hormone receptor superfamily. COUP-TF homologues have been cloned in many species, from Drosophila to human. The protein sequences of COUP-TFs are highly homologous across species, suggesting functional conservation. Two COUP-TF genes have been cloned from human, and their genomic organizations have been characterized. To determine whether the genomic organization is conserved between human and mouse, we isolated two mouse COUP-TF genes (I and II) and characterized their genomic structures. Both genes have relatively simple structures that are similar to those of their human counterparts. In addition, we mapped mouse COUP-TF I to the distal region of chromosome 13 and COUP-TF II to the central region of chromosome 7. Furthermore, we mapped human COUP-TF I to 5q14 of chromosome 5 and COUP-TF II to 15q26 of chromosome 15. The results demonstrate that COUP-TF genes are located in chromosomal regions that are syntenic between mouse and human.
    Comments (post)
    There are no comments posted here... Yet.
  55. (1994) Lutz B, Kuratani S, Cooney AJ, Wawersik S, Tsai SY, Eichele G, Tsai MJ. Developmental regulation of the orphan receptor COUP-TF II gene in spinal motor neurons. Development, 120(1):25-36.
    Members of the steroid/thyroid hormone receptor superfamily are involved in the control of cell identity and of pattern formation during embryonic development. Chicken ovalbumin upstream promoter-transcription factors (COUP-TFs) can act as regulators of various steroid/thyroid hormone receptor pathways. To begin to study the role of COUP-TFs during embryogenesis, we cloned a chicken COUP-TF (cCOUP-TF II) which is highly homologous to human COUP-TF II. Northern analysis revealed high levels of cCOUP-TF II transcripts during organogenesis. Nuclear extracts from whole embryos and from embryonic spinal cords were used in electrophoretic mobility shift assays. These assays showed that COUP-TF protein is present in these tissues and is capable of binding to a COUP element (a direct repeat of AGGTCA with one base pair spacing). Analysis of cCOUP-TF expression by in situ hybridization revealed high levels of cCOUP-TF II mRNA in the developing spinal motor neurons. Since the ventral properties of the spinal cord, including the development of motor neurons, is in part established by inductive signals from the notochord, we transplanted an additional notochord next to the dorsal region of the neural tube in order to induce ectopic motor neurons. We observed that an ectopic notochord induced cCOUP-TF II gene expression in the dorsal spinal cord in a region coextensive with ectopic domains of SC1 and Islet-1, two previously identified motor neuron markers. Collectively, our studies raise the possibility that cCOUP-TF II is involved in motor neuron development.
    Comments (post)
    There are no comments posted here... Yet.
  56. (1993) Cooney AJ, Leng X, Tsai SY, O'Malley BW, Tsai MJ. Multiple mechanisms of chicken ovalbumin upstream promoter transcription factor-dependent repression of transactivation by the vitamin D, thyroid hormone, and retinoic acid receptors. J. Biol. Chem., 268(6):4152-60.
    The chicken ovalbumin upstream promoter transcription factor (COUP-TF) is a member of the steroid/thyroid hormone receptor superfamily about which little is known of its functional role in the cell. However, it is able to repress hormonal induction of target genes by vitamin D3 receptor (VDR), thyroid hormone receptor (TR), and retinoic acid receptor (RAR). We have shown previously that COUP-TF can bind a wide variety of A/GGGTCA repeats. This promiscuous recognition of response elements correlates with the ability of COUP-TF I to repress other receptors that bind to A/GGGTCA repeats with different spacings between the half-sites. Here we show that repression of transactivation by these receptors is a general phenomenon for the COUP-TF subfamily, as inhibition is also observed with COUP-TF II. This repression is also dose-dependent on COUP-TF. Inhibition of VDR, TR, and RAR activities also occurs through natural physiological response elements found in the osteocalcin, myosin heavy chain, and beta RAR promoters, respectively. In search of the mechanisms of repression by COUP-TF we show that it does not involve the formation of detectable functionally inactive heterodimers between COUP-TF and VDR, TR, and RAR. Instead, we show that the mechanism of repression could occur at three different levels: (a) active silencing of transcription and dual competition for; (b) occupancy of DNA binding sites; and (c), heterodimer formation with retinoid X receptor, the coregulator of VDR, TR, and RAR. The silencing activity was localized to the putative ligand binding domain of COUP-TF. We postulate that COUP-TF may play a master role in regulating transactivation by VDR, TR, and RAR.
    Comments (post)
    There are no comments posted here... Yet.
  57. (1992) Cooney AJ, Tsai SY, O'Malley BW, Tsai MJ. Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors. Mol. Cell. Biol., 12(9):4153-63.
    Alignment of natural chicken ovalbumin upstream promoter transcription factor (COUP-TF) response elements shows that, in addition to the predominant direct repeat of the GGTCA motif with a 2-bp spacing, there are other functional COUP elements with variations in the GGTCA orientation and spacing. We systematically analyzed the binding of in vitro-synthesized COUP-TFs and showed that COUP-TF is capable of binding to oligonucleotides containing both direct repeats and palindromes and with different spacings of the GGTCA repeats. Subsequently, we analyzed four possible mechanisms proposed to explain how COUP-TF could bind to these spatial variations of the GGTCA repeat. We demonstrated that the functional DNA-binding form of COUP-TF is a dimer which requires two GGTCA half-sites to bind DNA. We demonstrated that the COUP-TF dimer undergoes a remarkable structural adaptation to accommodate binding to these spatial variants of the GGTCA repeats. A functional consequence of the promiscuous DNA binding of COUP-TF is its ability to down-regulate hormonal induction of target gene expression by other members of the steroid-thyroid hormone receptor superfamily such as the vitamin D3, thyroid hormone, and retinoic acid receptors. Our data indicate that COUP-TF may have an important role in hormonal regulation of gene expression by these receptors.
    Comments (post)
    There are no comments posted here... Yet.
  58. (1992) Kliewer SA, Umesono K, Heyman RA, Mangelsdorf DJ, Dyck JA, Evans RM. Retinoid X receptor-COUP-TF interactions modulate retinoic acid signaling. Proc. Natl. Acad. Sci. U.S.A., 89(4):1448-52.
    We have recently described the properties of direct repeats (DRs) of the half-site AGGTCA as hormone response elements (HREs). According to our results, spacing the half sites by 3, 4, or 5 nucleotides determines specificity of response for vitamin D3, thyroid hormone, and retinoic acid receptors, respectively. This so-called 3-4-5 rule led to the prediction that remaining spacing options of 0, 1, and 2 might serve as targets for other nuclear receptors. A concurrent prediction is that receptors recognizing common sites might display more complex or combinatorial interactions. In exploring these predictions, we discovered that both the retinoid X receptor (RXR) and COUP-TF bind preferentially to a DR-1 motif. In vivo, RXR and COUP-TF display antagonistic action such that RXR-mediated activation is fully repressed by COUP-TF. In vitro studies reveal that COUP-TF and RXR form heterodimers on DR-1. Thus, these results support a general proposal in which the half-site spacing preferences may be used as a means to decipher potentially complex and interactive regulatory circuits.
    Comments (post)
    There are no comments posted here... Yet.
  59. (1992) Berrodin TJ, Marks MS, Ozato K, Linney E, Lazar MA. Heterodimerization among thyroid hormone receptor, retinoic acid receptor, retinoid X receptor, chicken ovalbumin upstream promoter transcription factor, and an endogenous liver protein. Mol. Endocrinol., 6(9):1468-78.
    Thyroid hormone receptor (TR) binds to DNA as a monomer, homodimer, and heterodimer with nuclear proteins. We have confirmed that the TR can heterodimerize with retinoid X receptors (RXRs)-alpha and -beta, and have found that another member of the nuclear receptor superfamily, chicken ovalbumin upstream promoter transcription factor (COUP-TF), also formed heterodimers with the TR in the context of binding to a palindromic thyroid hormone-responsive element (TREp). The interaction between COUP-TF and the TR was confirmed using specific antibodies which supershifted the COUP-TF/TR DNA complexes. The complex between the TR and the major TR heterodimerization partner in liver was unaffected by antibodies to COUP-TF and RXR beta, but was supershifted by an anti-RXR alpha antibody, indicating that the liver protein is highly related to RXR alpha. Indeed, the TR/RXR and TR/liver protein heterodimers contact the same guanidine residues in TREp. The retinoic acid receptor (RAR) also heterodimerized with COUP-TF as well as with RXR alpha, RXR beta, and the TR heterodimerization partner in liver. In contrast to its ability to heterodimerize with the TR and RAR, we did not detect heterodimers between COUP-TF and either RXR alpha, RXR beta, or the liver nuclear protein in the context of binding to the TREp. These results show that the major TR heterodimerization partner in liver is highly related to RXR alpha, but that other nuclear receptors such as COUP-TF can heterodimerize with the TR and RAR, suggesting that selective protein-protein interactions may be involved in the tissue and target gene specificities of hormone action.
    Comments (post)
    There are no comments posted here... Yet.
  60. Nakamura E, Makita Y, Okamoto T, Nagaya K, Hayashi T, Sugimoto M, Manabe H, Taketazu G, Kajino H, Fujieda K. 5.78 Mb terminal deletion of chromosome 15q in a girl, evaluation of NR2F2 as candidate gene for congenital heart defects. Eur J Med Genet, 54(3):354-6.
    All patients with terminal deletion of chromosome 15q have been reported to show intrauterine growth retardation, postnatal growth retardation, abnormal facial appearance and developmental delay. Haploinsufficiency of IGF1R was considered to be responsible for these symptoms. However, it is difficult to explain other symptoms seen in some of the patients, such as congenital heart defects by the absence of IGF1R alone. Here, we reported a patient with congenital heart defects and a 5.78 Mb terminal deletion of chromosome 15q detected by array-CGH. Among the patients reported to share congenital heart defects and terminal deletion of chromosome 15q, our patient had the smallest deletion. Evaluating the deletion map, NR2F2 was considered a candidate gene contributing to congenital heart defects in patients with terminal deletion of chromosome 15q.
    Comments (post)
    There are no comments posted here... Yet.
  61. Kieback DG, Levi T, Kohlberger P, Fiedrich U, Press MF, Rosenthal HE, Möbus VJ, Runnebaum IB, Tong XW, Tsai MJ. Chicken ovalbumin upstream promoter--transcription factor (COUP-TF) expression in human endometrial cancer cell lines. Anticancer Res., 16(6B):3371-6.
    COUP-TF is an orphan member of the steroid receptor superfamily. COUP-TF down-regulates hormonal induction by other steroid receptors involved in cell proliferation and differentiation. Previous study has suggested a role in gynecological adenocarcinoma. In the present study we evaluated COUP-TF expression in endometrial cancer. Fourteen permanent endometrial cancer cell lines were established front the primary site of 14 endometrial cancer patients. Immunocytochemistry for COUP-TF-like activity was performed using an affinity selected polyclonal rabbit-derived antibody in an immunoperoxidase staining technique. The staining intensity and cell surface area were quantified by image analysis. By immunostain 2 cell lines were COUP-TF (+), 6 (+ +) and 6 (+ + +). Quantitative differences in staining intensity and cell surface area were not significant in these groups. All cell lines tested were immunocytochemically negative for estrogen and progesterone receptors. COUP-TF is a new factor involved in endometrial cancer cell differentiation and growth, especially in estrogen receptor negative tumors.
    Comments (post)
    There are no comments posted here... Yet.
There are no papers here... Yet.
Suggest a Pubmed paper